On a certain type of nonlinear integral equations
نویسندگان
چکیده
منابع مشابه
ANALYTICAL-NUMERICAL SOLUTION FOR NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE
Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولOn meromorphic solutions of certain type of difference equations
We mainly discuss the existence of meromorphic (entire) solutions of certain type of non-linear difference equation of the form: $f(z)^m+P(z)f(z+c)^n=Q(z)$, which is a supplement of previous results in [K. Liu, L. Z. Yang and X. L. Liu, Existence of entire solutions of nonlinear difference equations, Czechoslovak Math. J. 61 (2011), no. 2, 565--576, and X. G. Qi...
متن کاملanalytical-numerical solution for nonlinear integral equations of hammerstein type
using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of hammerstein type . the mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). the procedure of this method is so fast and don't need high cpu and complicated programming. the advantages of this method are that we can applied for those integral equation...
متن کاملLyapunov-type integral inequalities for certain higher order differential equations
In this paper, we obtain Liapunov-type integral inequalities for certain nonlinear, nonhomogeneous differential equations of higher order with without any restriction on the zeros of their higher-order derivatives of the solutions by using elementary analysis. As an applications of our results, we show that oscillatory solutions of the equation converge to zero as t → ∞. Using these inequalitie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1944
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1944-08247-5